Simulated Annealing with Asymptotic Convergence for Nonlinear Constrained Global Optimization
نویسندگان
چکیده
In this paper, we present constrained simulated annealing (CSA), a global minimization algorithm that converges to constrained global minima with probability one, for solving nonlinear discrete nonconvex constrained minimization problems. The algorithm is based on the necessary and sufficient condition for constrained local minima in the theory of discrete Lagrange multipliers we developed earlier. The condition states that the set of discrete saddle points is the same as the set of constrained local minima when all constraint functions are non-negative. To find the discrete saddle point with the minimum objective value, we model the search by a finite inhomogeneous Markov chain that carries out (in an annealing fashion) both probabilistic descents of the discrete Lagrangian function in the original-variable space and probabilistic ascents in the Lagrange-multiplier space. We then prove the asymptotic convergence of the algorithm to constrained global minima with probability one. Finally, we extend CSA to solve nonlinear constrained problems with continuous variables and those with mixed (both discrete and continuous) variables. Our results on a set of nonlinear benchmarks are much better than those reported by others. By achieving asymptotic convergence, CSA is one of the major developments in nonlinear constrained global optimization today. 1 Problem Definition A general discrete constrained minimization problem is formulated as follows: minimizex f(x) subject to g(x) ≤ 0; x = (x1, . . . , xn) (1)
منابع مشابه
Simulated Annealing with Asymptotic Convergence for Nonlinear Constrained Global Optimization ? 1 Problem Deenition
In this paper, we present constrained simulated annealing (CSA), a global minimization algorithm that converges to constrained global minima with probability one, for solving nonlinear discrete non-convex constrained minimization problems. The algorithm is based on the necessary and suucient condition for constrained local minima in the theory of discrete Lagrange multipliers we developed earli...
متن کاملConstrained Simulated Annealing with Applications in Nonlinear Continuous Constrained Global Optimization
This paper improves constrained simulated annealing (CSA), a discrete global minimization algorithm with asymptotic convergence to discrete constrained global minima with probability one. The algorithm is based on the necessary and suucient conditions for discrete constrained local minima in the theory of discrete La-grange multipliers. We extend CSA to solve nonlinear continuous constrained op...
متن کاملSimulated annealing with asymptotic convergence for nonlinear constrained optimization
In this paper, we present constrained simulated annealing (CSA), an algorithm that extends conventional simulated annealing to look for constrained local minima of nonlinear constrained optimization problems. The algorithm is based on the theory of extended saddle points (ESPs) that shows the one-to-one correspondence between a constrained local minimum and anESP of the corresponding penalty fu...
متن کاملTuning Strategies in Constrained Simulated Annealing for Nonlinear Global Optimization
This paper studies various strategies in constrained simulated annealing (CSA), a global optimization algorithm that achieves asymptotic convergence to constrained global minima (CGM) with probability one for solving discrete constrained nonlinear programming problems (NLPs). The algorithm is based on the necessary and suucient condition for discrete constrained local minima (CLM) in the theory...
متن کاملSuperlinearly convergent exact penalty projected structured Hessian updating schemes for constrained nonlinear least squares: asymptotic analysis
We present a structured algorithm for solving constrained nonlinear least squares problems, and establish its local two-step Q-superlinear convergence. The approach is based on an adaptive structured scheme due to Mahdavi-Amiri and Bartels of the exact penalty method of Coleman and Conn for nonlinearly constrained optimization problems. The structured adaptation also makes use of the ideas of N...
متن کامل